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Summary

� In severely phosphorus (P)-impoverished environments, plants have evolved to use P very

efficiently. Yet, it is unclear how P allocation in leaves contributes to their photosynthetic

P-use efficiency (PPUE) and position along the leaf economics spectrum (LES). We address

this question in 10 species of Banksia and Hakea, two highly P-efficient Proteaceae genera.
� We characterised traits in leaves of Banksia and Hakea associated with the LES: leaf mass

per area, light-saturated photosynthetic rates, P and nitrogen concentrations, and PPUE. We

also determined leaf P partitioning to five biochemical fractions (lipid, nucleic acid, metabolite,

inorganic and residual P) and their possible association with the LES.
� For both genera, PPUE was negatively correlated with fractional allocation of P to lipids, but

positively correlated with that to metabolites. For Banksia only, PPUE was negatively corre-

lated with residual P, highlighting a strategy contrasting to that of Hakea.

Phosphorus-allocation patterns significantly explained PPUE but were not linked to the

resource acquisition vs resource conservation gradient defined by the LES.
� We conclude that distinct P-allocation patterns enable species from different genera to

achieve high PPUE and discuss the implications of different P investments. We surmise that

different LES axes representing different ecological strategies coexist in extremely

P-impoverished environments.

Introduction

Phosphorus (P) is an essential nutrient for plant growth and is
involved in many physiological processes. Thus, P fertilisation
is pivotal to high productivity in agriculture. However,
rock-derived P fertilisers are not renewable, and global reserves
continue to be consumed, mainly in the agricultural sector, due
to the dependence of current agricultural systems on P fertilisers
(Fixen & Johnston, 2012). Moreover, P limitation in natural
terrestrial ecosystems has been widely underestimated (Hou
et al., 2020) and is becoming more critical under global change
(Wassen et al., 2005; Zhou et al., 2021; Tian et al., 2022).
Climate change is predicted to alter plant nutrient stoichiometry,
affecting competitive interactions and species distribution and
diversity (Elser et al., 2010; Yuan & Chen, 2015). As such, it is
essential to understand how plants use P efficiently to sustain
growth under P-limiting conditions (Pang et al., 2018).

The leaf economics spectrum (LES) defines a global trade-off
that contrasts fast-growing species with acquisitive traits with

slow-growing species with conservative traits (Wright
et al., 2004). Acquisitive traits are characterised by fast nutrient
acquisition and photosynthetic rates, while conservative traits are
characterised by long-lived leaves with high investment in leaf
structure (Wright et al., 2004). Plants growing on infertile soils,
including P-impoverished sites, tend to exhibit more conservative
growth strategies and retain scarce nutrients in the soil–plant sys-
tem (Hayes et al., 2014; Guilherme Pereira et al., 2019). For
instance, along a 2-million-year dune chronosequence in
south-western Australia, plants growing on older severely
P-impoverished dunes have higher leaf mass per area (LMA), leaf
dry matter content (LDMC) and defence strategies based on sili-
con, a beneficial nutrient, but lower concentrations of essential
nutrients (i.e. P and nitrogen (N)) than plants growing on
younger P-richer dunes (Hayes et al., 2014; Guilherme Pereira
et al., 2019; de Tombeur et al., 2020b, 2021). While LMA
increases with declining soil P availability along this natural
nutrient gradient, photosynthetic rates do not decrease, when
expressed either on an area or on a mass basis (Guilherme Pereira
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et al., 2019). Furthermore, photosynthetic rates are faster for spe-
cies of Banksia and Hakea grown in soil from the older, more
P-impoverished sites along this chronosequence than in those in
soil from younger, less P-impoverished sites (Hayes et al., 2024).
However, it is not clear how plants allocate nutrients within their
leaves, particularly P, to achieve high photosynthetic P-use effi-
ciency (PPUE) and how P allocation and leaf traits associated
with the LES drive photosynthetic nutrient-use efficiency in
severely P-impoverished environments.

One way for plants to adapt or acclimate to P limitation is by
reducing the concentration of P in their leaves (Veneklaas
et al., 2012). Phosphorus in leaves comprises five operational bio-
chemical pools: nucleic acids, phospholipids, metabolic P (com-
prising inorganic P (Pi) and small P-containing metabolites) and
a residual fraction that likely contains phosphorylated proteins
among other P-containing chemical compounds not captured in
other fractions (Hidaka & Kitayama, 2011, 2013; Mo
et al., 2019; Yan et al., 2019; Liu et al., 2023). Along a 120-yr
deglaciation chronosequence on the eastern Tibetan Plateau with
varying soil P speciation and availability, evergreen species main-
tain their PPUE by decreasing the total amount of P in their
leaves and by adjusting the allocation of P among fractions, with
fast and slow economic strategies driving plant succession along
the chronosequence (Lei et al., 2021). Similar results were
reported for a fast-growing Banksia sessilis (Proteaceae), allocating
more P to nucleic acids than the slow-growing Banksia attenuata
in severely P-impoverished soil (Han et al., 2021). A recent sur-
vey demonstrated a partial association between variation in P
allocation along the LES in 12 evergreen species co-occurring on
P-impoverished soils in south-eastern Australia (Tsujii
et al., 2023). However, it is not clear how the allocation of P to
different P fractions in highly P-efficient plant species under
extremely P-limiting conditions might be linked to the gradient
of resource acquisition vs conservation that is defined by the LES.

South-western Australia is one of the most nutrient-
impoverished regions in the world (Lambers et al., 2010; Vis-
carra Rossel & Bui, 2016; Kooyman et al., 2017) and is recog-
nised as a global biodiversity hotspot (Myers et al., 2000;
Williams et al., 2011). The Proteaceae family is prominent, with
most species in the family being endemic to the region (Beard
et al., 2000; Hopper, 2009). Adaptations have evolved in the
Proteaceae that provide them with a high P-acquisition effi-
ciency in extremely P-impoverished soils (Hayes et al., 2021;
Lambers, 2022). The high P-acquisition efficiency is comple-
mented by numerous adaptations that also give Proteaceae a
high internal P-use efficiency (Hayes et al., 2021). Proteaceae
function at a very low abundance of ribosomal RNA (rRNA)
and low concentrations of protein in mature leaves (Lambers
et al., 2015a; Liu et al., 2022). During leaf development, Protea-
ceae replace phospholipids with lipids that do not contain P,
such as sulfolipids and galactolipids (Lambers et al., 2012). The
demand for P is further spread over time with the leaf growth
being dissociated from the P-demanding development of the
photosynthetic apparatus, a phenomenon known as ‘delayed
greening’ (Lambers et al., 2011; Kuppusamy et al., 2014, 2021;
Bird et al., 2024). These adaptations have allowed Proteaceae to

function at low foliar P and N concentrations ([P] and [N],
respectively) without compromising photosynthetic perfor-
mance, as is usually the case under extremely low P availability
(Veneklaas et al., 2012; Guilherme Pereira et al., 2019; Hayes
et al., 2021). This results in a high leaf PPUE and photosyn-
thetic N-use efficiency (PNUE) (Denton et al., 2007; Lambers
et al., 2012; Sulpice et al., 2014; Hayes et al., 2018; Guilherme
Pereira et al., 2019). Liu et al. (2023) showed that P allocation
patterns among a wide range of species from different families
in south-western Australia are species-dependent. However, it
remains unknown how the P investment at the biochemical level
explains the relatively high PPUE of species from different gen-
era within the Proteaceae.

In this study, we combined major leaf traits associated with the
LES framework (i.e. LMA, mass-based photosynthetic rates, leaf
[P] and [N]) with the allocation of P to the major biochemical
fractions described above in a range of species of Banksia and
Hakea that occur on extremely P-impoverished soils in Badgin-
garra National Park, Western Australia. Banksia and Hakea are
emblematic and phylogenetically well-separated genera of the
Proteaceae family, with long evolutionary histories and strong
diversification (Hopper, 2009; Hayes et al., 2021). We aimed to
determine the dependence of physiological processes such as
photosynthesis and PPUE on P allocation in leaves, and how
P-allocation patterns are associated with traits related to the LES.
For the first time, we investigated whether P-allocation patterns
contribute to the distribution of species along a continuum of
resource-use strategies (i.e. acquisitive vs conservative) in highly
P-efficient genera of Proteaceae occurring in some of the most
P-impoverished soils on earth. We hypothesised that (1) the allo-
cation of P to lipids and small metabolites would be negatively
and positively correlated with PPUE, respectively, as observed in
other studies (Hidaka & Kitayama, 2013; Suriyagoda
et al., 2023); (2) in relation to their evolutionary history, Banksia
and Hakea species would be positioned at the highly conservative
end of the LES, and their leaf P allocation, particularly that to
lipids, metabolites and nucleic acids would contribute to the
position of these species along the LES.

Materials and Methods

Species selection and study area

Five Banksia species (Proteaceae) and five Hakea species (Pro-
teaceae) were selected as the highly abundant species in the tar-
geted extremely P-impoverished area of Badgingarra National
Park (S30.412, E115.367), c. 200 km north of Perth, Western
Australia (Fig. 1). The vegetation is kwongan heath, dominated
by sclerophyllous shrubs of the family Proteaceae, followed by
Myrtaceae and Fabaceae (Pate & Beard, 1984). The climate is
Mediterranean with hot dry summers and cool wet winters,
with a mean annual maximum temperature of 26°C and a mean
annual rainfall of 440 mm (1999–2018, Badgingarra Research
Station, Australian Bureau of Meteorology, http://www.bom.
gov.au). Five individuals of each species were sampled at four
sites along a c. 8 m elevation gradient with contrasting soils
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(Fig. 1), with one species (Hakea conchifolia) found at two sites
(Fig. 1c,e).

Leaf characteristics and nutrient analyses

Mature fully expanded undamaged and sun-exposed leaves were
collected on 16 or 17 June 2020, scanned with an optical scanner
(Epson Perfection V800 Photo; Epson, Los Alamitos, CA, USA)
and the images analysed for projected leaf area (WinRHIZO Pro
Software, Regent Instruments Inc., Qu�ebec, QC, Canada). Leaf
thickness was measured using a portable digital calliper and cal-
culated as the average thickness of three positions on the lamina
along the axis from the base to the tip of the leaf. Leaves were
oven-dried for one week at 70°C to a constant weight, and leaf
mass per area (LMA; g m�2) was calculated as the total dry
weight of the sample divided by its total area. Leaf dry matter
content (LDMC; %) was calculated as the total dry weight of the
samples used for determining LMA divided by their total fresh
weight. Leaf lifespan was not measured due to the high leaf long-
evity of Australian Proteaceae as reported in previous studies
(Veneklaas & Poot, 2003; Denton et al., 2007; Shane
et al., 2014); instead, other traits (i.e. LMA and LDMC) were
used as proxies to estimate the LES (Wright et al., 2004).

In parallel with leaf collection for LMA and leaf thickness, dif-
ferent mature fully expanded undamaged and sun-exposed leaves
from the same individuals were harvested at the same time and
immediately snap-frozen in liquid N and stored at �80°C before

being freeze-dried for 7 d (VirTis BenchTop Pro ‘K’ Freeze
Dryer, SP Scientific, Warminster, PA, USA). Freeze-dried mate-
rial was finely ground using plastic vials and zirconium beads in a
vertical ball-mill grinder (GenoGrinder; Spex SamplePrep,
Metuchen, NJ, USA). Leaf total [N] was determined by combus-
tion with a glutamic acid standard using a CN analyser (Elemen-
tar Vario Macro CNS Analyser, Langenselbold, Hesse,
Germany). Leaf total [P] was determined by inductively coupled
plasma optical emission spectrometry (ICP-OES, Optima
5300DV; PerkinElmer, Waltham, MA, USA) following acid
digestion with a mixture of concentrated nitric and perchloric
acids (Zarcinas et al., 1987).

Analysis of leaf P fractions

Leaf inorganic P (Pi) concentration was determined after extraction
with acetic acid (Hurley et al., 2010). In brief, freeze-dried and
ground leaf material was mixed with cold 1% (v/v) acetic acid, sha-
ken with zirconium beads in bursts of 5000 rpm at 4°C for 15 s
with 5 min breaks between bursts (Precellys 24 Tissue Homogeni-
zer; Bertin Instruments, Montigny-le-Bretonneux, France). After
clarification by centrifugation at 14 000 g at 4°C for 15 min, the
extract was purified with activated charcoal (Dayrell et al., 2022),
and the Pi concentration was determined colorimetrically using a
malachite green-based method (Motomizu et al., 1983).

Foliar P was separated into lipid P, metabolic P (comprising
both metabolite P and Pi), nucleic acid P and a residual P fraction

Fig. 1 Sampling location of five Banksia species (triangles) and five Hakea species (circles) naturally occurring at four extremely phosphorus-impoverished
sites along a slight elevation gradient in Badgingarra National Park, Western Australia: (a) overall study area; the inset shows the location of Badgingarra
National Park in south-western Australia, c. 200 km north of Perth; (b) ‘bottom’ site with silty sand; (c) ‘slope’ site with sand; (d) ‘top’ site with exposed
laterite interspersed with sand; and (e) ‘laterite’ site with little sand. Elevation differs c. 8 m from (b) to (e). Elevation at (c) was similar to (d). The maps
were edited using ArcMap 10.8.2 GIS software using Google Earth imagery (Google Inc., Mountain View, CA, USA).
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by sequential extraction based on the differential solubility of each
class of P-containing compound using a modification of the
method described previously (Kedrowski, 1983; Hidaka &
Kitayama, 2013; Hayes et al., 2022). In brief, ground leaf material
was extracted with 12 : 6 : 1 (v/v/v) chloroform : methanol : for-
mic acid, then with 1 : 2 : 0.8 (v/v/v) chloroform : methanol :
water. The extracts were combined and extracted with
chloroform-saturated water into an organic phase and an aqueous
phase, which contained the lipid P and metabolic P fractions,
respectively. The pellet was resuspended in 85% (v/v) methanol
and extracted with 5% (w/v) trichloroacetic acid (TCA). After cen-
trifugation of the sample at 5000 g at 4°C for 15 min, the clear
supernatant was added to the metabolic P fraction. The pellet was
resuspended in 2.5% (w/v) TCA at 95°C to extract the nucleic
acids. The pellet was then transferred to a digestion flask by sus-
pending in 85% (v/v) methanol three times to make the residual P
fraction. All fractions were dried at c. 50°C and digested with a
mixture of concentrated nitric and perchloric acids to hydrolyse
esterified P (Zarcinas et al., 1987). The Pi concentration in each
fraction was determined colorimetrically as described above (Moto-
mizu et al., 1983). Metabolite P was calculated by subtracting Pi
from metabolic P, where Pi was determined as described above.
The recovery rate (%) was calculated as the sum of all P fractions
divided by total P measured directly from the ground leaves by
ICP-OES and ranged from 86% to 94% for our P fractionation
method (Supporting Information Table S1). Therefore, we present
total P as the sum of the four P fractions (lipid P, metabolic P,
nucleic acid P and residual P).

Gas exchange measurements

Leaf gas exchange was measured on attached leaves from the same
individuals and at the same time as leaves were collected to mea-
sure other leaf traits. Care was taken during sampling to ensure
that leaves used for gas exchange measurements were as similar as
possible to those sampled for the other traits, that is similar size,
age, intactness and position. Gas exchange measurements were
made on clear sunny days between 8:30 h and 10:30 h on 16 or
17 June 2020 using a portable open-system infrared gas
analyser (LI6400XT; LI-COR Biosciences, Lincoln, NE, USA)
with 1500 lmol�1 s�1 photosynthetic photon flux density,
400 lmol mol�1 CO2 with a chamber temperature of
23 � 1°C and relative humidity of 55–70%. When the chamber
area (6 cm2) was not completely filled, the leaf area inside the
chamber was measured by scanning as described above. Light-
saturated net photosynthetic rates were expressed on a leaf area
basis (Asat,area; lmol CO2 m

�2 s�1) and on a leaf dry mass basis,
using LMA for conversion (Asat,mass; nmol CO2 g

�1 s�1). Instan-
taneous PPUE and instantaneous PNUE were calculated as the
rate of net photosynthetic CO2 assimilation per unit P (lmol
CO2 g

�1 P s�1) and N (lmol CO2 g
�1 N s�1), respectively.

Soil sampling and analyses

Three soil samples were collected within 300 mm around the
base of three plants of each targeted species at each site on 16

June 2023. While soils were sampled 3 yr after the leaf traits were
measured, the timing within the year was matched to the timing
of the leaf sampling to minimise possible annual variation in soil
characteristics. Soils sampled in May 2017 at the same site, but
around different plants, were indistinguishable from the soils
sampled in 2023 in all parameters tested (EC, pH, concentra-
tions of total P and resin P; Table S2). The three subsamples of
soil from each plant were collected using a hand trowel
(depth = 100 mm) and mixed to form one soil sample for each
plant. The soil samples were air-dried at room temperature (c.
20°C) for 2 wk and then sieved (< 2 mm) to remove gravel and
large organic debris, including roots.

Soil pH and electrical conductivity (EC) were measured using
pH and EC probes calibrated with pH 4 and 7 buffers or a 1314
lS cm�1 solution, respectively (Orion Versa Star Pro; Thermo
Fisher Scientific, Waltham, MA, USA). Soil EC was measured in
1 : 5 (w/v) soil : deionised water, and pH was measured
in 0.01 M CaCl2 (1 : 5 (w/v) soil : solution).

Soil total [P] was determined by ignition (Saunders & Wil-
liams, 1955). In brief, air-dried soil was heated at 550°C for 1 h
and allowed to cool before extraction by shaking with 1 M HCl
(1 : 30 (w/v) soil : solution) for 16 h. A second soil subsample
was extracted with 1 M HCl (1 : 10 (w/v) soil : solution) for
16 h without prior ignition for the determination of inorganic P
(Saunders & Williams, 1955). Both subsamples were filtered
using Whatman No.42 filter papers, and the [P] was determined
colorimetrically (Motomizu et al., 1983). Organic P (Po) was cal-
culated by subtracting the [P] in the nonignited sample from the
[P] in the ignited sample.

Resin P, a measure of ‘plant-available’ soil P, was extracted
using anion exchange membranes (AEM; Turner &
Romero, 2009). Air-dried soil was shaken in deionised H2O
(1 : 6 (w/v) soil : water) with four anionic-form AEM strips
(10 9 40 mm; manufactured by BDH, Poole, UK, and distrib-
uted by VWR International) for 16 h. After shaking, the AEM
strips were rinsed free of soil particles with deionised H2O, and
the Pi was recovered by shaking the strips in 10 ml of 0.5 M
HCl for 1 h. Resin [P] in the extract was determined colorimetri-
cally (Motomizu et al., 1983). Soil [P] was expressed on a dry
weight basis (mg P kg�1 soil DW).

Statistical analyses

Data were analysed using the R software platform (R Core
Team, 2023). One-way ANOVAs were performed to test the sig-
nificance of differences in all measured variables among all species
or among species within both genera, and Tukey’s HSD post hoc
tests were run to determine significant differences. The differ-
ences between both genera were tested for some variables
(i.e. PPUE, PNUE and percentage P allocated to residual P)
using linear mixed-effects models that consider species as a ran-
dom effect using the ‘nlme’ package (Pinheiro & Bates, 2000).
The homogeneity of variances was verified using the Levene’s
test, and the normality of the residuals was verified using the
Shapiro–Wilk test (P > 0.05). Data on Asat,area, Asat,mass, leaf Pi
(% and absolute concentration) and soil Pi concentration were
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log10-transformed when either condition was not met. Due to
different sampling times, which prevented us from matching soil
and leaf samples, the linear regressions between leaf [P] and
soil [P] were run on unmatched averaged data with variation
shown for both variables. The principal component analyses
(PCAs) characterising functional foliar traits defining LES and
P-related traits were run using the ‘FactoMineR’ package on
log10-transformed data (Lê et al., 2008). The optimal number of
principal components (PCs) retained in the PCA was decided
using the function ‘estim_ncpPCA’ of the ‘missMDA’ package,
and missing values including null values were imputed with the
regularised iterative PCA algorithm using the function ‘impu-
tePCA’ from the same package, with the fixed number of PCs
estimated from the previous step (Josse & Husson, 2016). In the
case of no missing data, PCs explaining ≥ 90% of the variation
were retained. Pearson’s correlation analysis was used to analyse

the correlation between the allocation of P to the different frac-
tions and the individual coordinates extracted from individual
PCAs for each genus. Global median values for leaf traits pre-
sented in Fig. 2 were extracted with permission from the pub-
lished TRY plant trait database with the variation shown in
Table S3 (Kattge et al., 2011), and global data presented in
Fig. S1 were extracted with permission from the GLOPNET data
set from the leaf economics spectrum initiative (Wright
et al., 2004).

Results

Banksia and Hakea species had a high LMA, averaging
306 g m�2, compared with a global average of 60 g m�2

(Figs 2a, S1). However, there was a wide variation, reflecting dif-
ferences in leaf structure among species. The LMA closely aligned
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efficiency (PPUE) and (h) instantaneous
photosynthetic N-use efficiency (PNUE). Values
are means � SE (n = 4 or 5). Different letters
indicate significant differences among species
(post hoc Tukey’s HSD test, P < 0.05). The
horizontal dashed lines represent global median
values extracted from the TRY plant trait
database; the associated variation is presented in
Supporting Information Table S3 (Kattge
et al., 2011). Bm, Banksia menziesii; Ba, Banksia
attenuata; Bca, Banksia candolleana; Bch,
Banksia chamaephyton; Bg, Banksia glaucifolia;
Hf, Hakea flabellifolia; Ha, Hakea auriculata; Hc,
Hakea conchifolia (Laterite and Slope); Hi, Hakea
incrassata; Hp, Hakea prostrata.
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with leaf thickness (Fig. 2b). Leaf dry matter content was rela-
tively high and constant for all samples of the targeted species,
averaging 56% � 0.5% (n = 54) across our entire data set (data
not shown). Leaf [P] were low compared with a global average
with Banksia species ranging from 0.124 to 0.202 mg P g�1 DW
for B. glaucifolia and B. menziesii, respectively, and Hakea species
ranging from 0.114 to 0.205 mg P g�1 DW for H. flabellifolia
and H. prostrata, respectively (Figs 2c, S1). Leaf [N] were also
low compared with a global average, between 4.9 and
7.2 mg N g�1 DW, with only B. chamaephyton and B. glaucifo-
lia having significantly lower [N] than some of the other species
(Figs 2d, S1). Foliar [N] was relatively more conserved among all
Proteaceae tested than foliar [P] (1.5 and 1.8-fold variation across
all species, respectively). This conservation was particularly pro-
nounced among Hakea species (1.2-fold variation), with an aver-
age of 6.7 mg N g�1 DW with no strictly significant differences
within this genus (P > 0.05; Fig. 2d). The average N : P ratio
for the 10 species was 41, which was notably high compared with
a global average of 13 (Fig. S2).

Light-saturated photosynthetic rates were more variable than
leaf [P] and [N] within each genus (Fig. 2e,f). Area-based photo-
synthetic rates (Asat,area) were spanning the entire range of that
measured in the LES (Fig. S1), although most species had slower
rates than the global average. However, when expressed on a mass
basis, photosynthetic rates (Asat,mass) were no more than 6% (H.
flabellifolia) to 43% (H. prostrata) of the global average rate,
reflecting the high LMA of these species (Fig. 2a,f).

The instantaneous PPUE of the study group ranged from
61 lmol CO2 g

�1 P s�1 for H. flabellifolia to 375 and 246 lmol
CO2 g�1 P s�1 for B. glaucifolia and H. prostrata, respectively
(Fig. 2g). Therefore, the values were at or above the global med-
ian values, except for H. flabellifolia and H. conchifolia growing
on the slope. The instantaneous PNUE followed the same rela-
tive pattern across species as the PPUE, but the values were all
less than half of the global average, except for B. glaucifolia, which
was near the global average (Fig. 2h). Both PPUE and PNUE
were indistinguishable between Banksia and Hakea (P > 0.05),
but varied among species within each genus (Fig. 2g,h).

There were no significant differences in pH or EC in the soil
under any of the species (Table 1). Soil total [P] was significantly
higher under B. glaucifolia and H. conchifolia, the two species
found on the lateritic site, consistent with higher soil organic [P]
under these plants (Fig. S3a; Table 1). There were no significant
differences in soil resin P under any of the species (Fig. S3b;
Table 1). In contrast to the species-level comparison, combining
the data from these same soils by site revealed differences in soil
[P] (Table S4). The soil at the upper-most laterite site had the
highest soil [P], while the bottom and slope sites had the lowest
soil total [P], respectively. The soil at the top site was between
these extremes. Soil total [P] at the site level were consistent with
soil Pi and Po concentrations. Interestingly, the slope and top
sites, which were intermediate in elevation, had the lowest and
highest resin [P], respectively (Table S4). Despite these differ-
ences in soil total [P] and resin [P] among the four sites, there
was no significant correlation between leaf [P] and either soil
total [P] or resin [P] (Fig. S3).

There was a high level of consistency in the proportion of P
each species allocated to nucleic acid P, with an overall average of
36.6% of total P allocated to this fraction (Fig. 3a). The propor-
tional allocation of P to lipids was also relatively conserved across
species, particularly among Hakea species, with the greatest varia-
tion of 1.4-fold between H. conchifolia (on the slope) and H.
incrassata (Fig. 3b). The allocation of P to Pi was also conserved
across all species with no differences among Banksia species
(P > 0.05). The only statistically significant differences among
all species were that H. conchifolia (on the slope) had a greater P
allocation to Pi than H. prostrata, B. menziesii and B. attenuata
(Fig. 3c).

The allocation of P to small metabolites and the residual frac-
tion was much more variable, with a 2.5-fold and 14.9-fold varia-
tion among all species, respectively (Fig. 3d,e). Within the
respective genera, B. glaucifolia had a higher proportion of P allo-
cated to small metabolites than B. attenuata and B. candolleana,
while H. conchifolia (on the slope) had a lower proportional allo-
cation than the other Hakea species (P < 0.05; Fig. 3d). Residual
P only represented a small proportion of total foliar P compared

Table 1 Soil chemical characteristics of the top layer (0–100 mm depth) under five Banksia and five Hakea species naturally occurring on extremely
P-impoverished soils.

Species Site EC (lS cm�1) pH (CaCl2)
Total P
(mg kg�1 DW)

Inorganic P
(mg kg�1 DW)

Organic P
(mg kg�1 DW)

Resin P
(mg kg�1 DW)

B. menziesii Bottom 17 � 1 a 4.5 � 0 b 4.5 � 0.6 c 0.18 � 0.01 ab 4.3 � 0.5 c 0.23 � 0.00 a
B. attenuata Bottom 14 � 1 a 4.5 � 0.1 b 3.9 � 0.5 c 0.19 � 0.03 ab 3.7 � 0.4 c 0.22 � 0.04 a
B. candolleana Slope 17 � 1 a 4.6 � 0.1 b 4.2 � 0.8 c 0.16 � 0.05 abc 4.0 � 0.7 c 0.27 � 0.01 a
B. chamaephyton Slope 15 � 5 a 4.6 � 0 ab 3.4 � 0.6 c 0.12 � 0.01 abc 3.3 � 0.5 c 0.24 � 0.05 a
B. glaucifolia Laterite 23 � 4 a 4.6 � 0.1 b 12.2 � 2.6 ab 0.48 � 0.12 a 11.7 � 2.5 ab 0.16 � 0.04 a
H. flabellifolia Slope 27 � 7 a 4.7 � 0.1 ab 5.5 � 1.1 c 0.07 � 0.03 bc 5.4 � 1.0 c 0.17 � 0.02 a
H. auriculata Top 21 � 4 a 5.0 � 0.1 a 8.3 � 0.9 bc 0.12 � 0.02 abc 8.2 � 0.9 bc 0.10 � 0.02 a
H. conchifolia Laterite 27 � 1 a 4.5 � 0 b 16.7 � 1.8 a 0.52 � 0.13 a 16.2 � 1.6 a 0.11 � 0.02 a
H. conchifolia Slope 21 � 5 a 4.6 � 0 b 4.2 � 0.7 c 0.05 � 0.02 c 4.2 � 0.7 c 0.23 � 0.07 a
H. incrassata Top 22 � 2 a 4.8 � 0.1 ab 9.0 � 1.1 bc 0.15 � 0.03 abc 8.9 � 1.1 bc 0.14 � 0.03 a
H. prostrata Slope 22 � 6 a 4.5 � 0.1 b 4.5 � 1.5 c 0.08 � 0.03 bc 4.4 � 1.5 c 0.20 � 0.08 a

DW, dry weight; EC, electrical conductivity.
Values are means � SE (n = 3). Different letters indicate significant differences among species (post hoc Tukey’s HSD test, P < 0.05).
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with the other fractions. There was a larger variation in residual P
allocation among the species of Banksia than among the species
of Hakea. However, this P allocation was not significantly differ-
ent (P = 0.052) at the genus level between Banksia and Hakea
with averages of 6.5% and 2.6% of total P, respectively (Fig. 3e).

A correlation analysis across the two genera showed significant
correlations between PPUE and most of the leaf traits, as well as
P fractions expressed on a fractional basis (Fig. 4). The strongest
correlations were between PPUE and Asat,area and Asat,mass which
were supported by strong correlations for each genus examined
individually. By contrast, there was a weak correlation between
PPUE and LMA, which was not sustained by either genus indivi-
dually. Interestingly, no correlation was found between PPUE
and total foliar [P], despite a nearly twofold variation in leaf [P]
within each genus (Fig. 2). Thus, the differences in PPUE were
associated with differences in photosynthetic rates, rather than
leaf [P]. Like PPUE, PNUE was strongly correlated with photo-
synthetic rates, rather than foliar [N] or LMA (Fig. S5). There-
fore, PPUE and PNUE were strongly correlated (R2 = 0.97 and
R2 = 0.88 for Banksia and Hakea species, respectively;
P < 0.001; Fig. S5).

The only correlations between PPUE and the fractional alloca-
tion of P that was supported by both genera assessed individually
were a negative correlation of PPUE with lipid P (Fig. 4f) and a
positive correlation of PPUE with metabolite P (Fig. 4h). There

was a weak positive correlation of PPUE with nucleic acid P, but
this was not supported by either genus individually. At the level
of all plants examined, there was a negative correlation between
PPUE and residual P. This correlation was driven by the Banksia
species, but not by the Hakea species. Conversely, there was a
negative correlation between PPUE and Pi only for the Hakea
species examined.

Correlations specific to each genus were also found when frac-
tions were expressed as an absolute concentration of P, that is
PPUE correlated with P concentration in lipids for Banksia species
and P concentration in metabolites for Hakea species (Fig. S6).
Also, there was a strong correlation for Banksia species between
PPUE and the absolute P concentration in the residual fraction.
Interestingly, P allocated to the lipid and residual fractions (both
fractional and actual concentrations) were positively correlated with
leaf [N] only for the Banksia species. Moreover, there was a strong
correlation between leaf [N] and nucleic acid P concentrations sup-
ported by both genera assessed individually (Fig. S7).

In a PCA, the first two PCs explained 70% of the total var-
iance for all individuals of Banksia and Hakea when describing
functional foliar traits associated with the LES (Fig. 5a;
Table S5). When P-related foliar traits were combined with the
foliar functional traits, PC1 and PC2 encompassed 59% of the
variation in all individuals (Fig. 5b; Table S5). There was no dis-
tinction between the two genera when all traits were considered
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Fig. 3 Phosphorus (P) allocation to five
biochemical fractions as a proportion of total
foliar P for five Banksia and five Hakea species
naturally occurring on extremely P-impoverished
soils: (a) nucleic acid P, (b) lipid P, (c) inorganic P
(Pi), (d) metabolite P (metabolic P–Pi) and (e)
residual P. Values are means � SE (n = 4 or 5).
Different letters indicate significant differences
among species (post hoc Tukey’s HSD test,
P < 0.05). Actual concentrations of P (mg P g�1

DW) in each fraction are given in Supporting
Information Fig. S4. Bm, Banksia menziesii; Ba,
Banksia attenuata; Bca, Banksia candolleana;
Bch, Banksia chamaephyton; Bg, Banksia
glaucifolia; Hf, Hakea flabellifolia; Ha, Hakea
auriculata; Hc, Hakea conchifolia (Laterite and
Slope); Hi, Hakea incrassata; Hp, Hakea
prostrata.
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Fig. 4 Correlations between instantaneous photosynthetic phosphorus (P)-use efficiency (PPUE) and leaf traits for five Banksia and five Hakea species
naturally occurring on extremely P-impoverished soils. Correlations between PPUE and major leaf traits (a) area-based light-saturated photosynthetic rate
(Asat,area), (b) mass-based light-saturated photosynthetic rate (Asat,mass), (c) leaf mass per unit area (LMA), (d) leaf P concentration, and correlations
between PPUE and percentages of P allocated to (e) nucleic acid P, (f) lipid P, (g) inorganic P (Pi), (h) metabolite P (metabolic P–Pi) and (i) residual P are
shown. Solid lines indicate significant linear correlations (black: among all individuals, n = 52–55; blue: among Banksia species, n = 24 or 25; and red:
among Hakea species, n = 28–30; P < 0.05).
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together. However, in accordance with the LES framework,
structural traits (i.e. LMA and leaf thickness) were placed oppo-
site to total leaf [P] and [N] in both PCAs (Fig. 5a,b; Table S5).
Surprisingly, photosynthesis-related traits (i.e. Asat,area, Asat,mass,
PPUE and PNUE) were dissociated from the contrasts between
structural traits and nutrient concentrations and were placed
along a different PC.

The fractional allocation of P to metabolites and lipids
grouped with and opposite to photosynthesis-related traits,
respectively, along PC1 in the PCA describing functional and
P-related traits. The allocation to residual P was strongly asso-
ciated with leaf [N] along PC2, but not with nucleic acid P that
was placed on PC3 (Fig. 5b; Table S5).

The individual PCAs of functional leaf traits comprising the
LES for Banksia (Fig. 5c) and Hakea species (Fig. 5d) showed
similar patterns, with structural traits positioned orthogonally to
photosynthesis-related traits. For Banksia species, structural traits
were opposed to both nutrient concentrations and
photosynthesis-related traits along PC2, which we define as the
LES for this genus (Fig. 5c; Table S6). On the other hand, nutri-
ent concentrations were opposed to both structural and
photosynthesis-related traits in PC1; therefore, we also present
correlations between the allocation of P to the different fractions
for PC1 (Fig. 5c; Tables S6, S7). However, for Hakea species,

photosynthesis-related traits and nutrient concentrations grouped
together orthogonally to structural traits along PC1 (Fig. 5d;
Table S6). As structural traits had a high loading on both PC1
and PC2 for Hakea species, but physiological traits had a high
loading only on PC1, we define PC1 as the LES axis for this
genus (Fig. 6; Tables S6, S7).

All five P fractions expressed as an absolute P concentration
were significantly positively correlated with the distribution along
PC1 for Hakea species, but we did not observe any significant
correlations between the fractional P allocation and the distribu-
tion of species along PC1 (Fig. 6; Table S7). This highlights the
tight link between an increase in P in those fractions and increase
in total [P]. Similarly for Banksia species, the allocation of P to
most P fractions except Pi and metabolite P was significantly cor-
related with the position of individual plants along PC1, which
describes the resource-use gradient for this genus and was driven
by total [P] (Fig. 6; Table S7). Only nucleic acid P concentration
was significantly correlated with the distribution of species along
PC2, defined as the LES, but this was not retained for the percen-
tage of P allocated to nucleic acids (Fig. 6; Table S7). The per-
centage of P allocated to lipid P, metabolite P and residual P
significantly correlated with the distribution along PC1, substan-
tiating the correlations found between those P fractions and
PPUE for Banksia species (Figs 4, 6).
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Fig. 5 Principal component analysis (PCA) of (a)
functional leaf traits defining the leaf economics
spectrum and (b) after adding in phosphorus (P)-
related leaf traits of five Banksia (blue) and five
Hakea species (red) naturally occurring on
extremely P-impoverished soils; PCA of
functional leaf traits of (c) Banksia species and (d)
Hakea species. Detailed results are presented in
Supporting Information Tables S5 and S6. Nucleic
acid P, lipid P, inorganic P (Pi), metabolite P and
residual P are expressed as a fraction of leaf total
P concentration ([P]). Asat,area, area-based light-
saturated photosynthetic rate; Asat,mass, mass-
based light-saturated photosynthetic rate; LMA,
leaf mass per unit area; PNUE, instantaneous
photosynthetic nitrogen-use efficiency; PPUE,
instantaneous photosynthetic P-use efficiency.
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Fig. 6 Correlations between the distribution of individuals of Banksia (blue) and Hakea (red) along a continuum of resource-use strategies (i.e. acquisitive
vs conservative) defined by each individual principal component (PC) analysis in Fig. 5 and phosphorus (P) allocated to five biochemical fractions,
expressed as a percentage of total P and absolute concentration. (a) PC1 and (b) PC2 are shown for Banksia, but (c) only PC1 is shown for Hakea, as
explained in the text. Solid and broken lines represent significant and nonsignificant linear correlations, respectively (*, P < 0.05; **, P < 0.01; ***,
P < 0.001; ns, not significant, i.e. P > 0.05).
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Discussion

Our results support the notion that Proteaceae naturally occur-
ring in extremely nutrient-impoverished environments modulate
the allocation of P in their leaves to achieve high PPUE. Of the
five P fractions measured, the allocation of P to lipids and to
small metabolites was the allocation most closely associated with
variation in PPUE. The allocation of P to other fractions, espe-
cially to nucleic acids and Pi, was more conserved among species
of both genera. These observations support our first hypothesis
that the allocation of P to lipids and small metabolites would be
negatively and positively correlated with PPUE, respectively. The
high PPUE and PNUE values observed for all Proteaceae in this
study are largely explained by their extremely low leaf [P] and
[N]. However, the interspecific variation in PPUE and PNUE
was largely explained by the variation in photosynthetic rates
(Asat,area and Asat,mass). While photosynthetic rates were generally
slower than global averages, they were more variable than leaf
nutrient concentrations among the species examined and spanned
the range of global values (Wright et al., 2004; Kattge
et al., 2011, 2020). All species had highly conservative leaf traits,
such as extremely high LMA and low leaf nutrient concentra-
tions, placing them on the far conservative end of the LES, sup-
porting our second hypothesis. Our correlation analyses show
that the P-allocation patterns of Banksia and Hakea species, spe-
cifically the allocation to small metabolites and residual P, con-
tributed differently to their high PPUE. Within each genus,
species were distributed along a genus-defined LES axis on which
structural and physiological traits were located at opposite ends.
However, the distribution of these species along these axes, which
represent the contrast between relatively more acquisitive to more
conservative resource-use strategies, was not correlated with their
allocation of P to the different fractions. These findings do not
support our second hypothesis. We suggest that, while species of
Proteaceae modulate their leaf P allocation, this does not explain
the variation in the resource-use strategy they exhibit to cope with
an extremely P-impoverished environment.

On the far ‘conservative’ end of the leaf economics
spectrum

Leaf [P] of Banksia and Hakea growing on extremely
P-impoverished soils were extremely low with an average of
0.16 mg P g�1 DW, which is even lower than in plants found in
typical kwongan vegetation (c. 0.3 mg P g�1 DW; Hayes
et al., 2018; Guilherme Pereira et al., 2019). Leaf [P] in this study
was among the lowest recorded world-wide (world-wide average:
1.23 mg P g�1 DW; Wright et al., 2004; Kattge et al., 2011;
Kattge et al., 2020). In alignment with low leaf total [P], all P
fractions had significantly lower concentrations than the global
averages for perennial species (Suriyagoda et al., 2023). All Pro-
teaceae in this study had similarly conservative leaf traits, for
example, low Asat,mass and high LMA and LDMC associated with
scleromorphy. This result highlights the dependence of mass-
based traits (e.g. Asat,mass and leaf [P]) on LMA and LDMC
(Poorter et al., 2009). However, the variation in those traits

cannot solely be explained by LMA and deserves further
investigation. Moreover, it is likely that all targeted species have
relatively long lifespans, since leaf lifespan for B. menziesii, B.
attenuata and H. prostrata is 2 yr or more (Veneklaas &
Poot, 2003; Denton et al., 2007; Shane et al., 2014). A longer
leaf lifespan allows for a longer residence time of nutrients in
leaves. The P-resorption efficiency (PRE) is high in leaves of
some of the species, for example > 90% for B. menziesii, 82% for
B. chamaephyton and 69% for B. attenuata (Denton et al., 2007;
de Campos et al., 2013; Hayes et al., 2014). High PRE is another
indicator of the high P-use efficiency for Proteaceae naturally
occurring in extremely P-impoverished environments.

Slight variation in soil total [P] and resin [P] was not asso-
ciated with higher leaf [P]. On the lateritic site, soil was shallower
than on the sandy nonlateritic sites. Yet, cluster-rooted species
such as Banksia and Hakea are able to efficiently access sufficient
nutrients from this lower soil volume and also directly from
lateritic gravels (Han et al., 2021). Moreover, at a very low P sup-
ply like that of our study site in Badgingarra National Park,
which has some of the most P-impoverished soils in the world
(Kooyman et al., 2017), P that is taken up by plants is mainly
used to support growth, rather than accumulating in leaves to a
high [P] (De Groot et al., 2003; Shane et al., 2003; Gille
et al., 2024). Accumulating more biomass rather than increasing
leaf [P] further emphasises the extreme P-conserving strategy of
these species.

There was no appreciable difference in soil characteristics
between our results from May 2017 and June 2023. Further-
more, both of these collections also differed little from those
taken at a nearby site within Badgingarra National Park in Octo-
ber 2017 (Dayrell, 2020). Finally, in the studied environment,
3 yr is likely much too short for significant changes to emerge in
soil physicochemical properties that are driven by long-term
pedogenic processes (de Tombeur et al., 2020a). Therefore, we
are confident that the differences in timing between leaf and soil
measurements did not impact the outcome of our results.

We observed some variation in structural (e.g. LMA) and phy-
siological (e.g. Asat, nutrient concentrations) traits among species
of both genera. These two sets of traits comprising the LES were
well-separated from each other in the PCA including both Bank-
sia and Hakea species, as well as in PCAs defined by each genus.
However, nutrient concentrations and photosynthesis-related
traits were orthogonal to one another on different axes in the
PCA of functional leaf traits. This arrangement was particularly
true for Banksia species. The divergence between these two sets of
traits was at odds with the principles of the LES, where these two
sets of traits on the global scale are at opposite ends along a single
axis (Wright et al., 2004). Leaf physiology constrains the
correlations between photosynthetic activity and nutrient concen-
trations or LMA. At a smaller scale, such as in extremely P-
impoverished environments in south-western Australia, plants
have adaptations that allow them to cope with extreme environ-
mental conditions (e.g. low nutrient availability and high light
intensity), likely without compromising leaf physiology and
therefore disrupting the single axis theorised in the global LES.
In our study, the measurements of leaf traits were performed on
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different leaves. However, we ensured that leaves of similar con-
dition (i.e. age, intactness and position in the canopy) were
sampled at the same time and from the same individuals for the
various analyses. Therefore, it is highly unlikely that the diver-
gences observed between structural and physiological traits in our
PCAs result from our sampling design. A similar methodology
was used in previous studies (Guilherme Pereira et al., 2019; Tsu-
jii et al., 2024).

In agreement with recent studies, we observed significant cor-
relations between PPUE or Asat and the allocation of P to differ-
ent fractions (Tsujii et al., 2023, 2024). Here, we show that the
allocation of P to these fractions is correlated with PPUE, but
not with the LES axes opposing contrasting resource-use strate-
gies among highly P-efficient species from two Proteaceae genera.
Interestingly, we did not find significant correlations between P-
allocation patterns (i.e. percentage of P allocated to each fraction)
and the distribution of individuals along the axes defining their
genus-specific LES, despite a gradient from relatively more acqui-
sitive to conservative strategies among species within each genus.
We suggest that the extremely conservative strategies displayed by
these species from a severely P-impoverished environment limit
intrageneric variation along those axes. However, we highlight
different strategies in the two genera to achieve high PPUE and
discuss below the implications of P allocation on physiological
processes.

Higher LMA is usually associated with slower growth rates, long
leaf lifespans and lower leaf protein concentrations (Poorter
et al., 2009). Our high LMA leaves had low leaf [N] and nucleic
acid [P], indicative of low protein and rRNA concentrations,
respectively, suggesting a low capacity to produce and replace pro-
teins. Hakea prostrata had a higher leaf nucleic acid P concentra-
tion, but similar leaf total [N], as the other Hakea species. This
indicates that mature H. prostrata leaves function at a lower leaf
protein: rRNA ratio, suggesting a faster protein turnover rate than
that of other species of Hakea (Matzek & Vitousek, 2009; Lam-
bers, 2022). In a glasshouse experiment conducted in acidic soil
similar to that found at our study site in Badgingarra National
Park, H. prostrata and B. menziesii had faster relative growth rates
than H. incrassata (Hayes et al., 2024). However, the potential cor-
relation between P fractions, leaf [N] and protein turnover has yet
to be explored. For this exploration, it will be crucial to consider
expanding leaves of species with contrasting growth rates.

Interconnection of N and P efficiency

Leaf N and nucleic acid P proportions were remarkably conserved
among all Proteaceae in our study. Hakea prostrata, B. attenuata
and B. thelemanniana restrain their nitrate uptake even when pro-
vided with a large amount of nitrate (Prodhan et al., 2016; Liu
et al., 2022). This nitrate-uptake restraint trait is also found in
two Myrtaceae co-occurring with Proteaceae in a highly P-
impoverished environment, suggesting that it is a convergent trait
in species that evolved in these environments (Liu et al., 2022).
Limiting N uptake appears to be a strategy that allows plants to
enhance P-use efficiency and is associated with low concentrations
of rRNA and, therefore, proteins (Matzek & Vitousek, 2009;

Prodhan et al., 2019). The low leaf [N] and extremely high N: P
ratios in leaves of all species in this study, as well as the lack of var-
iation among species, suggest nitrate-restraint occurs in these spe-
cies. Conversely, species growing in fertile environments that are
not limited by P or when supplied with additional nitrate acquire
and accumulate N to high levels (Greenwood & Hunt, 1986;
Tschoep et al., 2009; Prodhan et al., 2019). This supports the view
that nitrate-uptake restraint is an adaptation in Proteaceae and at
least one other plant family to low-P environments (Liu
et al., 2022). Further studies need to be carried out to explore the
prevalence of this trait among Proteaceae.

The lack of correlation between photosynthetic rates and [N]
or nucleic acid P concentrations indicates that photosynthesis
was limited by metabolic factors other than protein concentration
(Sulpice et al., 2014; Ellsworth et al., 2022). Moreover, a recent
study demonstrated that two Proteaceae species from south-
western Australia, Grevillea thelemanniana and Hakea cerato-
phylla, prioritise leaf N investment to photosynthesis-related pro-
teins while sacrificing proteins related to abiotic stress tolerance
to maintain rapid photosynthetic rates at low leaf [N], compared
with Arabidopsis thaliana (Liu, 2024). However, we suggest that
Banksia species might also function with higher enzyme concen-
trations in parallel with lower substrate abundance, considering
the strong correlation for this genus only found between PPUE
and residual P. The residual fraction is thought to contain a mix-
ture of insoluble P compounds, likely to include phosphorylated
proteins based on their solubility in the solvents used in the
sequential P fractionation (Chapin & Kedrowski, 1983;
Kedrowski, 1983). The strong correlation between leaf residual
[P] and leaf [N], which is a proxy for leaf protein concentration,
supports this hypothesis (Hidaka & Kitayama, 2011; Shen, 2023;
Tsujii et al., 2023, 2024). Interestingly, the correlation between
leaf [N] and residual [P] was only significant for species of Bank-
sia in our study, suggesting that species of Hakea function differ-
ently. The lack of correlation between PPUE and the P
concentration in small metabolites in Banksia species supports
the idea that there is a tight balance between substrate and
enzyme abundance (Dourado et al., 2021). The strong correla-
tions between PPUE, PNUE or Asat and residual [P] further sug-
gest that these proteins are involved in photosynthesis (Tsujii
et al., 2023, 2024). The lack of correlation between residual P
and either leaf [N] or PPUE for Hakea species highlights the dif-
ferent biochemical strategies in this genus to adapt to the extre-
mely nutrient-impoverished environment compared with the
Banksia species. Hakea species potentially function at higher sub-
strate concentrations than Banksia species, which exhibited a
positive correlation between PPUE and P concentration in small
metabolites. Determining the content of the residual P fraction
and its proportion of phosphorylated proteins is an essential chal-
lenge to the recently evolving field of P fractions in leaves (Liu
et al., 2023; Suriyagoda et al., 2023; Tsujii et al., 2024).

Implications of biochemical investment of P on PPUE

Foliar lipid P concentrations among the Banksia and Hakea spe-
cies examined here were low and similar to those found in several
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other species growing in severely P-impoverished environments
(Hidaka & Kitayama, 2011, 2013; Lambers et al., 2012; Yan
et al., 2019). It is likely that all Proteaceae in this study replaced
phospholipids by other lipids that do not contain P, such as sul-
folipids and galactolipids as previously determined for five of the
present species (Lambers et al., 2012). The endoplasmic reticu-
lum (ER) contains > 60% phospholipid by mass in a variety of
cells (Lagace & Ridgway, 2013). Therefore, the negative correla-
tion between lipid P and PPUE may indicate that the replace-
ment of phospholipids involves a trade-off between saving P and
maintaining the function of cellular membranes, particularly that
of the ER. The ER is involved in synthesising proteins destined
for endomembranes or export (Sadowski et al., 2008), so the
trade-off may be associated with both low protein and rRNA
concentrations. The link between phospholipids in the ER mem-
branes and protein synthesis, as well as protein turnover, in rela-
tion to P limitation requires further attention.

Inorganic phosphate concentration is tightly linked with that
of small metabolites via phosphorylation (Plaxton & Tran, 2011).
The fact that PPUE was positively correlated with metabolite P
but not with Pi indicates that plants growing under extremely
low P availability function at the lower limit of Pi concentrations.
Excess Pi is stored in the vacuole and remobilised for metabolism
when needed (Yang et al., 2017). Up to 95% of Pi can be stored
in the vacuole of plants growing high-P conditions (Bie-
leski, 1973). This figure is likely not representative of plants such
as the Proteaceae that naturally occur in severely P-limiting envir-
onments and function at very low leaf [P]. A typical P-starvation
response in a wide range of species is the reduction in the concen-
tration of Pi (Bieleski, 1968; Veneklaas et al., 2012; Yan
et al., 2019). However, there is currently no information on the
cellular compartmentation of P in P-efficient plants growing in
extremely P-limiting environments. Using 31P-nuclear magnetic
resonance (31P-NMR), Pratt et al. (2009) showed that a decrease
in cytosolic Pi concentration is the first response following Pi
starvation but that Pi efflux from the vacuole is not sufficient to
fully compensate for the lack of Pi supply in Acer pseudoplatanus
(Sapindaceae) and A. thaliana (Brassicaceae). Further investiga-
tion is required to identify the extent of the metabolic importance
of both cytosolic and vacuolar Pi pools under very low P avail-
ability. These aspects can be measured using metabolomics
approaches combined with 31P-NMR (Pratt et al., 2009; Gout
et al., 2011).

Positive correlations between PPUE and the fractional alloca-
tion of P to small metabolites are consistent with previous studies
(Wen et al., 2023), although we were able to distinguish low-
molecular-weight esterified metabolites (metabolite P) from Pi
which are sometimes pooled as metabolic P (Hidaka &
Kitayama, 2013). A decrease in the concentration of phosphory-
lated metabolites involved in major metabolic pathways, for
example, Benson–Bassham–Calvin cycle and glycolysis, decreases
their activity unless compensated by increases in enzyme quantity
that use these metabolites or changes in the catalytic properties of
the enzymes (Lambers et al., 2015b). Producing more enzyme is
unlikely to occur under low P availability as it would require a
greater investment of P in rRNA to support protein synthesis

(Veneklaas et al., 2012; Lambers, 2022). To achieve higher
PPUE, Banksia and Hakea species might increase P allocation to
small metabolites to support greater enzyme activity (i.e. higher
substrate concentration) and maintain relatively fast photosyn-
thetic rates. However, we observed a positive correlation between
nucleic acid P and metabolite P (R2 = 0.18, P = 0.002), consis-
tent with previous studies (Hidaka & Kitayama, 2013; Yan
et al., 2021; Suriyagoda et al., 2023), but contradictory to the
idea that lower enzyme concentration is compensated for by
higher small metabolite concentration. The weak correlations
between PPUE and metabolite P (absolute and proportional)
might be explained by the presence of phytate in the metabolite
pool. However, phytate is synthesised in the leaves as a storage
compound and to regulate cytoplasmic [Pi] (Strother, 1980;
Raboy, 2003), but is not a metabolite feeding into photosynth-
esis. Some P metabolites are products of photosynthesis-related
enzymes (e.g. glucose 1-P and fructose 6-P). Functioning at high
concentrations of photosynthetic intermediates might allow
plants to decrease the amount of N needed for protein, therefore
decreasing the need for P in rRNA (Sulpice et al., 2014; Lambers
et al., 2015b; Prodhan et al., 2019). Understanding how the con-
centrations of phosphorylated metabolites are regulated
and at which scale the composition of this pool is regulated is
warranted.

Concluding remarks

This study highlights critical differences in P-allocation pat-
terns between two genera of Proteaceae naturally occurring on
extremely P-impoverished soils, Banksia and Hakea, demon-
strating that these genera have contrasting strategies to achieve
high PPUE. For the first time, our study established LES gra-
dients within individual genera that range from species with
relatively more acquisitive to ones with more conservative
resource-use strategies, and that these gradients lacked obvious
links with P-allocation patterns in leaves. This may be
explained by the remarkably conservative nature of the stu-
died species; each species possessing contrasting P-use strate-
gies to cope with extremely P-limiting conditions, however
independently from the acquisition-conservation continuum
defined globally by the LES. Our results suggest that the LES
alone cannot capture all available resource-use strategies, parti-
cularly in the highly P-limited environment studied here. Our
results show that high PPUE was achieved by a proportion-
ally greater P allocation to small metabolites, which may
include photosynthetic intermediates (e.g. glucose 1-P and
fructose 6-P), and a proportionally smaller P allocation to
lipids for both Banksia and Hakea species. Interestingly, for
the Banksia species only, the actual concentration and relative
proportion of P allocated to the residual fraction, which likely
contains phosphorylated proteins, was negatively correlated
with PPUE and positively with leaf [N], highlighting that
both genera exhibit different strategies to enhance photosyn-
thetic activity. These findings have clear implications and
further our understanding of the differences and similarities
of plant functional traits related to biochemical, physiological
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and structural parameters, as well as trade-offs, that impact
the fitness, survival, growth and performance of Proteaceae.
Further investigation is necessary to explore the nature of
molecules comprising those P fractions, particularly the small
P metabolites and the residual fraction.
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